|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312 |
- ---
- title: "LAB 2: Perception et couleurs"
- author: "Antoine Neuraz"
- date: "19/11/2019"
- output:
- xaringan::moon_reader:
- css: ['default','css/my_style.css']
- lib_dir: libs
- seal: false
- nature:
- ratio: '4:3'
- countIncrementalSlides: false
- self-contained: true
- beforeInit: "addons/macros.js"
- ---
-
- ```{r setup, include=FALSE}
- knitr::opts_chunk$set(echo = TRUE, fig.asp = .6)
- library(ggplot2)
- #library(showtext)
- library(vizoR)
- library(dplyr)
- library(patchwork)
- library(see)
- library(RColorBrewer)
- ```
-
- ---
- class: inverse, center, middle
- # Perception des différentes marques dans ggplot2
-
- ---
- ## TODO: échauffement
-
- #### Générer un dataset aléatoire avec la fonction vizoR::generate_dataset_uniform
- ```{r}
- size <- list(100, 2)
- min_x <- 0
- max_x <- 1
- seed <- 34
- ```
- ---
- ## TODO: perception
-
- #### 1. Réaliser des plots avec les échelles suivantes sur la variable group :
- - couleur
- - forme
- - angle
- - taille
- - luminosité
- - courbe
- - encapsulage
- - remplissage
-
- Certaines échelles sont très simples à mettre en place (e.g. couleur, forme) mais d'autres n'existent pas directement. Il faut trouver une alternative.
-
- #### 2. Comparer l'efficacité des différentes échelles pour distinguer les 2 groupes
-
- ---
- ## Couleur
-
-
- ```{r, echo = F}
-
- dt <- generate_dataset_uniform(
- dataset_size = size,
- min_x = min_x,
- max_x = max_x,
- seed = seed
- )
- ```
-
- --
- .small[
- ```{r, echo = T}
-
- p_color <- ggplot( data = dt,
- aes(x = x, y = y, color = group)) +
- geom_point(size = 3, alpha = .6) +
- see::scale_color_material_d() +
- vizoR::theme_void_complete() +
- labs(subtitle= "Couleur")
-
- p_color
- ```
- ]
-
-
- ---
- ## Angle
-
- --
-
- .small[
- ```{r}
- p_angle <- dt %>%
- mutate(angle = ifelse(group == "group1", 0, pi / 3)) %>%
- ggplot(
- data = ., aes( x = x, y = y, angle = angle ) ) +
- geom_spoke(radius = 0.02,size = .8, alpha = .6 ) +
- theme_void_complete() +
- scale_color_material_d() +
- ggtitle("Angle")
- p_angle
- ```
- ]
- ---
- ## Taille
-
- --
-
- .small[
- ```{r}
- p_size <- dt %>%
- mutate(size = ifelse(group == "group1", 2, 3)) %>%
- ggplot( data = .,
- aes( x = x,y = y,size = size)) +
- geom_point(alpha = .6) +
- theme_void_complete() +
- scale_size(range = c(1, 3)) +
- ggtitle("Taille")
- p_size
- ```
- ]
-
- ---
- ## Luminosité
-
- --
-
- .small[
- ```{r}
- p_grey <- dt %>%
- ggplot(
- data = .,aes(x = x,y = y,color = group)) +
- geom_point(size = 3, alpha = .6) +
- theme_void_complete() +
- #scale_color_grey() +
- scale_color_grey(start=.8, end=.2)+
- ggtitle("Luminosité")
- p_grey
- ```
- ]
- ---
- ## Courbe
-
- --
-
- .small[
- ```{r}
- dt <- dt %>%
- mutate(curvature = ifelse(group == "group1", 0, 1))
-
- p_curve <- dt %>%
- ggplot(data = .,aes(x = x,y = y,xend = x, yend = y+max_x/50, curvature = curvature)) +
- #geom_curve()+
- geom_curve(data = subset(dt, group == 'group1'), curvature = 0, alpha = .7) +
- geom_curve(data = subset(dt, group == 'group2'), curvature = .7, alpha = .7) +
- scale_color_material_d() +
- theme_void_complete() +
- ggtitle("Courbe")
- p_curve
- ```
- ]
- ---
- ## Encapsulage
-
- --
-
- .small[
- ```{r}
- p_box <- dt %>%
- ggplot(data = .,aes(x = x,xend = x+max_x/50,y = y,yend = y, group = group)) +
- geom_point(data = subset(dt, group=='group2'),aes(x = x+max_x/100), shape = 22, size = 13) +
- geom_segment() +
- scale_color_material_d() +
- theme_void_complete() +
- ggtitle("Encapsulage")
- p_box
- ```
- ]
-
- ---
- ## Forme
-
- --
-
- .small[
- ```{r}
- p_shape <- dt %>%
- ggplot(data = .,aes(x = x,y = y,shape = group)) +
- geom_point(size = 3, alpha = .6) +
- theme_void_complete() +
- ggtitle("Forme")
- p_shape
- ```
- ]
- ---
- ## Remplissage
-
- --
-
- .small[
- ```{r}
- p_fill <- dt %>%
- ggplot(data = ., aes( x = x,y = y,fill = group)) +
- geom_point(size = 3, shape = 21, alpha = .7) +
- scale_fill_manual(values = c('group2' = 'black', 'group1' = 'white')) +
- theme_void_complete() +
- ggtitle("Remplissage")
- p_fill
- ```
- ]
-
- ---
- class: full, center, middle
- ```{r, echo = F, out.width = '2000px'}
- p_color + p_angle +
- p_size + p_grey +
- p_curve + p_box +
- p_shape + p_fill +
- plot_layout(ncol = 2)
-
-
- ```
-
-
- ---
- class: full
- ### Les couleurs dans ggplot2 `display.brewer.all()`
-
- ![:scale 80%](img/palettes.jpg)
-
- ---
- ## TODO: couleurs
-
- #### Charger le dataset diamonds et créer un sous-dataset aléatoire de 1000 lignes
-
- #### Plot carat en fonction du prix et de la couleur
-
- #### changer la palette par défaut vers une autre palette disponible
-
- ---
- ## TODO: couleurs 2
-
- #### Plot carat en fonction du prix avec carat en double encodage
-
- #### Aller sur [http://colorbrewer2.org]() et trouver une palette divergente
-
- #### Créer une palette custom basée sur cette palette et l'appliquer au plot précédent
-
- #### Caler la palette sur le carat moyen
-
- #### Annoter le plot avec une ligne désignant le carat moyen et un texte expliquant cette ligne
-
-
-
- ---
- ```{r}
- dsamp <- diamonds[sample(nrow(diamonds), 1000), ]
- ggplot(dsamp, aes(carat, price)) +
- geom_point(aes(colour = color)) +
- scale_color_brewer(palette = "Set3") +
- facet_wrap(~color)
- ```
-
- ```{r}
-
- ggplot(dsamp, aes(carat, price)) +
- geom_point(aes(colour = carat)) +
- scale_color_distiller(palette="RdYlBu")
- ```
-
- ```{r}
-
- #showtext_auto()
- #font_add_google("Schoolbell", "bell")
-
- font_family = "sans"
- annotate_color = "grey50"
-
- midpoint = (max(dsamp$carat)-min(dsamp$carat))/2
-
- ggplot(dsamp, aes(carat, price)) +
- geom_vline(xintercept = midpoint, color = annotate_color) +
- geom_point(aes(colour = carat)) +
- scale_color_gradient2(low = "#d8b365",
- mid="#f5f5f5",
- high="#5ab4ac",
- midpoint = midpoint) +
- annotate("text",
- x=.78, y=15000, hjust=1, srt=40,
- label ="this is the midpoint",
- family=font_family,
- color=annotate_color) +
- annotate("curve",
- x = .8, xend=midpoint-.01, y=15000, yend = 14000,
- curvature = -.5,
- color=annotate_color ,
- arrow=arrow(length = unit(0.03, "npc") )) +
-
- theme_elegant() +
- theme(panel.grid.minor = element_blank(),
- panel.grid.major.x = element_blank(),
- legend.position = "none")
- ```
-
-
-
-
-
-
|