--- title: "LAB 2: Perception et couleurs" author: "Antoine Neuraz" date: "19/11/2019" output: xaringan::moon_reader: css: ['default','css/my_style.css'] lib_dir: libs seal: false nature: ratio: '4:3' countIncrementalSlides: false self-contained: true beforeInit: "addons/macros.js" --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE, fig.asp = .6) library(ggplot2) #library(showtext) library(vizoR) library(dplyr) library(patchwork) library(see) library(RColorBrewer) ``` --- class: inverse, center, middle # Perception des différentes marques dans ggplot2 --- ## TODO: échauffement #### Générer un dataset aléatoire avec la fonction vizoR::generate_dataset_uniform ```{r} size <- list(100, 2) min_x <- 0 max_x <- 1 seed <- 34 ``` --- ## TODO: perception #### 1. Réaliser des plots avec les échelles suivantes sur la variable group : - couleur - forme - angle - taille - luminosité - courbe - encapsulage - remplissage Certaines échelles sont très simples à mettre en place (e.g. couleur, forme) mais d'autres n'existent pas directement. Il faut trouver une alternative. #### 2. Comparer l'efficacité des différentes échelles pour distinguer les 2 groupes --- ## Couleur ```{r, echo = F} dt <- generate_dataset_uniform( dataset_size = size, min_x = min_x, max_x = max_x, seed = seed ) ``` -- .small[ ```{r, echo = T} p_color <- ggplot( data = dt, aes(x = x, y = y, color = group)) + geom_point(size = 3, alpha = .6) + see::scale_color_material_d() + vizoR::theme_void_complete() + labs(subtitle= "Couleur") p_color ``` ] --- ## Angle -- .small[ ```{r} p_angle <- dt %>% mutate(angle = ifelse(group == "group1", 0, pi / 3)) %>% ggplot( data = ., aes( x = x, y = y, angle = angle ) ) + geom_spoke(radius = 0.02,size = .8, alpha = .6 ) + theme_void_complete() + scale_color_material_d() + ggtitle("Angle") p_angle ``` ] --- ## Taille -- .small[ ```{r} p_size <- dt %>% mutate(size = ifelse(group == "group1", 2, 3)) %>% ggplot( data = ., aes( x = x,y = y,size = size)) + geom_point(alpha = .6) + theme_void_complete() + scale_size(range = c(1, 3)) + ggtitle("Taille") p_size ``` ] --- ## Luminosité -- .small[ ```{r} p_grey <- dt %>% ggplot( data = .,aes(x = x,y = y,color = group)) + geom_point(size = 3, alpha = .6) + theme_void_complete() + #scale_color_grey() + scale_color_grey(start=.8, end=.2)+ ggtitle("Luminosité") p_grey ``` ] --- ## Courbe -- .small[ ```{r} dt <- dt %>% mutate(curvature = ifelse(group == "group1", 0, 1)) p_curve <- dt %>% ggplot(data = .,aes(x = x,y = y,xend = x, yend = y+max_x/50, curvature = curvature)) + #geom_curve()+ geom_curve(data = subset(dt, group == 'group1'), curvature = 0, alpha = .7) + geom_curve(data = subset(dt, group == 'group2'), curvature = .7, alpha = .7) + scale_color_material_d() + theme_void_complete() + ggtitle("Courbe") p_curve ``` ] --- ## Encapsulage -- .small[ ```{r} p_box <- dt %>% ggplot(data = .,aes(x = x,xend = x+max_x/50,y = y,yend = y, group = group)) + geom_point(data = subset(dt, group=='group2'),aes(x = x+max_x/100), shape = 22, size = 13) + geom_segment() + scale_color_material_d() + theme_void_complete() + ggtitle("Encapsulage") p_box ``` ] --- ## Forme -- .small[ ```{r} p_shape <- dt %>% ggplot(data = .,aes(x = x,y = y,shape = group)) + geom_point(size = 3, alpha = .6) + theme_void_complete() + ggtitle("Forme") p_shape ``` ] --- ## Remplissage -- .small[ ```{r} p_fill <- dt %>% ggplot(data = ., aes( x = x,y = y,fill = group)) + geom_point(size = 3, shape = 21, alpha = .7) + scale_fill_manual(values = c('group2' = 'black', 'group1' = 'white')) + theme_void_complete() + ggtitle("Remplissage") p_fill ``` ] --- class: full, center, middle ```{r, echo = F, out.width = '2000px'} p_color + p_angle + p_size + p_grey + p_curve + p_box + p_shape + p_fill + plot_layout(ncol = 2) ``` --- class: full ### Les couleurs dans ggplot2 `display.brewer.all()` ![:scale 80%](img/palettes.jpg) --- ## TODO: couleurs #### Charger le dataset diamonds et créer un sous-dataset aléatoire de 1000 lignes #### Plot carat en fonction du prix et de la couleur #### changer la palette par défaut vers une autre palette disponible --- ## TODO: couleurs 2 #### Plot carat en fonction du prix avec carat en double encodage #### Aller sur [http://colorbrewer2.org]() et trouver une palette divergente #### Créer une palette custom basée sur cette palette et l'appliquer au plot précédent #### Caler la palette sur le carat moyen #### Annoter le plot avec une ligne désignant le carat moyen et un texte expliquant cette ligne --- ```{r} dsamp <- diamonds[sample(nrow(diamonds), 1000), ] ggplot(dsamp, aes(carat, price)) + geom_point(aes(colour = color)) + scale_color_brewer(palette = "Set3") + facet_wrap(~color) ``` ```{r} ggplot(dsamp, aes(carat, price)) + geom_point(aes(colour = carat)) + scale_color_distiller(palette="RdYlBu") ``` ```{r} #showtext_auto() #font_add_google("Schoolbell", "bell") font_family = "sans" annotate_color = "grey50" midpoint = (max(dsamp$carat)-min(dsamp$carat))/2 ggplot(dsamp, aes(carat, price)) + geom_vline(xintercept = midpoint, color = annotate_color) + geom_point(aes(colour = carat)) + scale_color_gradient2(low = "#d8b365", mid="#f5f5f5", high="#5ab4ac", midpoint = midpoint) + annotate("text", x=.78, y=15000, hjust=1, srt=40, label ="this is the midpoint", family=font_family, color=annotate_color) + annotate("curve", x = .8, xend=midpoint-.01, y=15000, yend = 14000, curvature = -.5, color=annotate_color , arrow=arrow(length = unit(0.03, "npc") )) + theme_elegant() + theme(panel.grid.minor = element_blank(), panel.grid.major.x = element_blank(), legend.position = "none") ```